

L. S. SKAGGS PHARMACY INSTITUTE

RAPID LITERATURE REVIEW

CANNABIS OR CANNABINOID PRODUCTS FOR ACUTE PAIN

DRUG REGIMEN REVIEW CENTER, UNIVERSITY OF UTAH COLLEGE OF PHARMACY

LAUREN HEATH, PHARMD, MS, BCACP

JUNE 14, 2022

I have no conflicts of interest to disclose

©UNIVERSITY OF UTAH HEALTH

PRESENTATION OUTLINE

- Evidence review approach
- Expert comments on human experimental models
- Overview of evidence for use of CBPs for people with acute pain
 - Systematic reviews of randomized controlled trials
 - Randomized controlled trials
- Summary

RAPID REVIEW METHODS

- Objective:
 - Identify and summarize relevant evidence to assist in decision-making by the CRRB

Relevant evidence:

- Systematic reviews (SRs) of randomized, controlled trials (RCTs) or RCTs
- Intervention: cannabis, cannabis-derived products, or cannabinoids (abbreviated CBPs)
- Population: people with acute pain
 - Pain no longer than about ~1 month
 - NOT human experimental models for acute pain

RAPID REVIEW METHODS

- Searched 2 major databases: Medline and Embase
 - SRs: no date restriction
 - RCTs: 2020 to present (April to May 2022)
- Focus on information reported in SRs
 - Primary: measures of pain intensity
 - Assessment of risk-of-bias (ROB)/quality of included RCTs
- Perform ROB assessment for RCTs not included in a SR using the Cochrane risk of bias 2 tool¹

BACKGROUND

- Animal studies generally support potential effectiveness of CBPs for acute pain^{2,3}
- **Mixed evidence** of efficacy of CBPs for acute pain in human experimental models
 - Neilsen et al. (5 trials): 3 with limited evidence of efficacy
 - Other 2 trials showed attenuation of opioid analgesia, and hyperalgesia⁴
 - Beaulieu et al.: "They are mostly negative and in 4 of them, more intense pain was reported at high doses"⁵
 - No benefit of oral CBD for pain intensity, allodynia or hyperalgesia in 2 additional trials^{6,7}

- Identified 11 SRs containing at least 1 relevant RCT
- Total of 11 RCTs published between 1981 and 2022
 - 10 RCTs were included in a SR
 - No SR included all identified RCTs
- Variable research question(s) across included SRs
 - Pain of any duration $(N=3)^{8-10}$
 - 4 focused on acute pain (N=2)¹¹⁻¹² or post-surgical pain (N=2)¹³⁻¹⁴
 - Pain associated with certain conditions (ie, orthopedics [N=2]^{15-16,} orofacial [N=1]¹⁷)
 - Potential opioid-sparing effects (N=1)³

- Conclusions from SRs addressing acute pain evidence:
 - The majority concluded CBPs are <u>not</u> better than control for analgesia^{8,12,13,17}
 - 2 SRs reported a possible benefit of CBPs for acute pain
 - Pooled effect (6 trials) for reduction in patientreported scores pain scores for CBPs vs control¹¹:
 - $-MD (95\%CI): -0.90 (-1.69 to -0.10), I^2 = 65\%$
 - Heterogeneity related to route of administration

- Conclusions from SRs addressing acute pain evidence:
 - Increased pain at rest post-surgery at 12 hours (but not 1-6 hours) for CBPs vs placebo, $l^2 = 72\%^{16}$
 - Limited evidence (3 SRs) does not support a reduction in opioid use with adjunctive CBP^{4,13,15}
 - Safety per acute pain focused SR (6 RCTs)¹¹:
 - Serious AE, CBP vs control: 3.7% vs 2.65%, OR = 1.44 (95%CI, 0.60 to 3.48)
 - Dizziness: OR = 1.96 (95%CI, 1.20 to 3.20)
 - Hypotension: OR = 3.61 (95%CI, 1.02 to 12.80)

- Design and risk of bias of RCTs
 - All randomized, controlled; 1 with unknown blinding¹⁸
 - Total number of participants: 20 to 340
 - All with placebo comparator, often (n=7) with other analgesics^{19,21-24,27,28,}; 4 trials with active comparator^{15,21,24,27,28}
 - All trials except for 2^{19,20} were rated as having an unclear risk of bias (Cochrane tool) for 2+ measures^{4,8,11-13,16}
- **Population** of RCTs:
 - Post-operative pain after various major surgeries (N=8)^{18,20-22,24-}
 - 1 knee arthroplasty osteoarthritis at baseline²³
 - Tooth extraction (N=2)^{27,28}
 - Acute, non-traumatic lower back pain (N=1)¹⁹

- **CBP intervention** was a single cannabinoid in all trials
- Most trials administered a single CBP dose

CBP Intervention	Number of trials	Population(s)
Levonantradol IM x 1 dose ^{18,25,26}	3	Unknown, trauma, or
THC x 1 dose, ²² or dronabinol 5 mg orally x	2	renal surgery Hysterectomy, or radical
8 doses within 48 hr ²⁴	Ζ	prostatectomy
Nabilone 0.5 x 1 dose, ²⁰ or 1-2 mg orally x 3 doses within 24 hr ²¹	2	Variable major surgery, or elective surgeries (pain: secondary outcome)
CBD 400 mg orally x 1 dose ¹⁹	1	Non-traumatic acute LBP
CBD topically TID x 14 days ²³	1	Unilateral knee arthroplasty
GW842166 ^a orally x 1 dose ²⁷	1	Tooth extraction
AZD1940 ^b orally x 1 dose ²⁸	1	Tooth extraction

Abbreviations: CB1, cannabinoid receptor type 1; CB2, cannabinoid receptor type 2; CBP, cannabinoid-based product; hr, hour; IM, intramuscularly; TID, three times daily;

^a CB2 receptor agonist; ^b peripheral CB1 and CB2 receptor agonist

- Analgesic efficacy
 - CBP not better than placebo for pain in most trials^{19,20,22-} 24,27,28
 - Two trials with some degree of analgesia for post-surgical pain:
 - Both of levonantradol IM vs placebo: 1 with a significant decrease in pain,²⁶ and other with numerical decrease²⁵
 - Active comparator outperformed levonantradol and placebo in 3rd levonantradol trial^{12,18}
 - Increased pain 9-24 hours post-operatively for highest dose of nabilone vs placebo and active comparator²¹
 - NSAIDs, but not experimental CBPs, reduced pain versus placebo after tooth extraction^{27,28}

SUMMARY

- Review included 11 RCTs of 20-340 participants, primarily conducted in the acute post-operative period
- Available clinical trial evidence limited by:
 - Unclear risk of bias for 2 or more domains for most trials
 - Use of a single cannabinoid often for only 1 dose, and often administered at variable times relative to surgery
 - Other clinical and methodological heterogeneity
- The limited evidence is *inconclusive* regarding efficacy of CBPs for acute pain

Thank you

©UNIVERSITY OF UTAH HEALTH

- Higgins JPT, Savovic J, Page MJ et al. Revised Cochrane risk-of-bias tool for randomized trials (RoB 2). <u>https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2</u>. Accessed May 25, 2022.
- 2. Starowicz K, Finn DP. Cannabinoids and Pain: Sites and Mechanisms of Action. Adv Pharmacol. 2017;80:437-475.
- 3. Soliman N, Haroutounian S, Hohmann AG, et al. Systematic review and meta-analysis of cannabinoids, cannabis-based medicines, and endocannabinoid system modulators tested for antinociceptive effects in animal models of injury-related or pathological persistent pain. *Pain*. 2021;162(Suppl 1):S26-s44.
- 4. Nielsen S, Picco L, Murnion B, et al. Opioid-sparing effect of cannabinoids for analgesia: an updated systematic review and meta-analysis of preclinical and clinical studies. *Neuropsychopharmacology*. 2022;47(7):1315-1330.
- 5. Beaulieu P. Cannabinoids and acute/postoperative pain management. Pain. 2021;162(8):2309.
- 6. Schneider T, Zurbriggen L, Dieterle M, et al. Pain response to cannabidiol in induced acute nociceptive pain, allodynia, and hyperalgesia by using a model mimicking acute pain in healthy adults in a randomized trial (CANAB I). *Pain*. 2022;163(1):e62-e71.
- 7. Dieterle M, Zurbriggen L, Mauermann E, et al. Pain response to cannabidiol in opioid-induced hyperalgesia, acute nociceptive pain, and allodynia using a model mimicking acute pain in healthy adults in a randomized trial (CANAB II). *Pain.* 2022.
- 8. Fisher E, Moore RA, Fogarty AE, et al. Cannabinoids, cannabis, and cannabis-based medicine for pain management: a systematic review of randomised controlled trials. *Pain*. 2021;162(Suppl 1):S45-s66.
- Rabgay K, Waranuch N, Chaiyakunapruk N, Sawangjit R, Ingkaninan K, Dilokthornsakul P. The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis. J Am Pharm Assoc (2003). 2020;60(1):225-

- 10. Campbell FA, Tramèr MR, Carroll D, Reynolds DJ, Moore RA, McQuay HJ. Are cannabinoids an effective and safe treatment option in the management of pain? A qualitative systematic review. *Bmj.* 2001;323(7303):13-16.
- 11. Gazendam A, Nucci N, Gouveia K, Abdel Khalik H, Rubinger L, Johal H. Cannabinoids in the Management of Acute Pain: A Systematic Review and Meta-analysis. *Cannabis and Cannabinoid Research*. 2020;5(4):290-297.
- 12. Stevens AJ, Higgins MD. A systematic review of the analgesic efficacy of cannabinoid medications in the management of acute pain. Acta Anaesthesiol Scand. 2017;61(3):268-280.
- 13. Abdallah FW, Hussain N, Weaver T, Brull R. Analgesic efficacy of cannabinoids for acute pain management after surgery: A systematic review and meta-analysis. *Regional Anesthesia and Pain Medicine*. 2020;45(7):509-519.
- 14. Rai A, Meng H, Weinrib A, et al. A Review of Adjunctive CNS Medications Used for the Treatment of Post-Surgical Pain. CNS Drugs. 2017;31(7):605-615.
- 15. Vivace BJ, Sanders AN, Glassman SD, Carreon LY, Laratta JL, Gum JL. Cannabinoids and orthopedic surgery: a systematic review of therapeutic studies. *Journal of orthopaedic surgery and research*. 2021;16(1):57.
- 16. Madden K, George A, van der Hoek NJ, Borim FM, Mammen G, Bhandari M. Cannabis for pain in orthopedics: a systematic review focusing on study methodology. *Can J Surg.* 2019;62(6):369-380.
- 17. Grossman S, Tan H, Gadiwalla Y. Cannabis and orofacial pain: a systematic review. Br J Oral Maxillofac Surg. 2021.
- 18. Guillaud J, Legagneux F, Paulet C. Trial of levonantradol for postoperative analgesia. *Cahiers* d'Anesthesiologie. 1983;31(3):243-248.
- 19. Bebee B, Taylor DM, Bourke E, et al. The CANBACK trial: a randomised, controlled clinical trial of oral cannabidiol for people presenting to the emergency department with acute low back pain. *Med J Aust*. 2021;214(8):370-375.

- 20. Levin DN, Dulberg Z, Chan AW, Hare GM, Mazer CD, Hong A. A randomized-controlled trial of nabilone for the prevention of acute postoperative nausea and vomiting in elective surgery. *Can J Anaesth.* 2017;64(4):385-395.
- 21. Beaulieu P. Effects of nabilone, a synthetic cannabinoid, on postoperative pain. Can J Anaesth. 2006;53(8):769-775.
- 22. Buggy DJ, Toogood L, Maric S, Sharpe P, Lambert DG, Rowbotham DJ. Lack of analgesic efficacy of oral delta-9-tetrahydrocannabinol in postoperative pain. *Pain*. 2003;106(1-2):169-172.
- 23. Haffar A, Khan IA, Abdelaal MS, Banerjee S, Sharkey PF, Lonner JH. Topical Cannabidiol (CBD) After Total Knee Arthroplasty Does Not Decrease Pain or Opioid Use: A Prospective Randomized Double-Blinded Placebo-Controlled Trial. J Arthroplasty. 2022:doi: 10.1016/j.arth.2022.1003.1081.
- 24. Seeling W, Kneer L, Büchele B, et al. [Delta(9)-tetrahydrocannabinol and the opioid receptor agonist piritramide do not act synergistically in postoperative pain]. *Anaesthesist*. 2006;55(4):391-400.
- 25. Kantor TG, Hopper M. A study of levonantradol, a cannabinol derivative, for analgesia in post operative pain. *Pain.* 1981;10(Suppl. 1): S37.
- 26. Jain AK, Ryan JR, McMahon FG, Smith G. Evaluation of intramuscular levonantradol and placebo in acute postoperative pain. *J Clin Pharmacol.* 1981;21(S1):320s-326s.
- 27. Ostenfeld T, Price J, Albanese M, et al. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. *Clin J Pain*. 2011;27(8):668-676.
- 28. Kalliomäki J, Segerdahl M, Webster L, et al. Evaluation of the analgesic efficacy of AZD1940, a novel cannabinoid agonist, on post-operative pain after lower third molar surgical removal. *Scand J Pain*. 2013;4(1):17-22.

- 29. Utah Medical Cannabis Act. Part 2. Section 201. Effective March 24, 2022. <u>https://le.utah.gov/xcode/Title26/Chapter61A/26-61a-S201.html?v=C26-61a-S201_2022032420220324#26-61a-201(5)(c)</u>. Accessed May 5, 2022.
- 30. Institute for Clinical Systems Improvement. Pain; Assessment, Non-Opioid Treatment Approaches and Opioid Management. <u>https://www.icsi.org/guideline/pain/</u>. Accessed May 25, 2022.
- 31. Hegmann KT, Weiss MS, Bowden K, et al. ACOEM practice guidelines: opioids for treatment of acute, subacute, chronic, and postoperative pain. J Occup Environ Med. 2014;56(12):e143-159.
- 32. Centers for Disease Control and Prevention. Acute pain. Last reviewed May 6, 2020. https://www.cdc.gov/acute-pain/about/index.html. Accessed May 5, 2022.
- Centers for Disease Control and Prevention. Clinical guidance for selected common acute pain conditions. Last reviewed January 19, 2022. <u>https://www.cdc.gov/acute-pain/</u>. Accessed May 5, 2022.

Extra slides

©UNIVERSITY OF UTAH HEALTH

ACUTE PAIN: NEW QUALIFYING CONDITION

- Utah Medical Cannabis Act, 26-61a-104²⁹:
 - "Pain that is expected to last for two weeks or longer for an acute condition, including a surgical procedure, for which a medical professional may generally prescribe opioids for a limited duration..."
- Medical cannabis card expires 30 days from issue

EVIDENCE REVIEW APPROACH

- Searched Embase and Ovid-Medline
- Used filter for for systematic reviews
 - Reviewed title/abstract for 228 possible reviews
- Focus on SRs + updated search for RCTs from 2020 to present (based on Fisher 2021 SR)
 - Reviewed title/abstract for 125 possible clinical trials
- Criteria:
 - Systematic review or overview of systematic reviews of RCTs
 - Trial of cannabis, cannabis-derived products, or cannabinoids vs any comparator
 - Acute pain disorder (primarily per review author report; or $\leq 4 \text{ wk}$)
- Not reviewed:
 - Healthy volunteers (ie, experimental pain models)
 - Non-randomized in-human data
 - Pre-clinical data

EXPERT COMMENTS ON IN-HUMAN EXPERIMENTAL PAIN MODELS

- Neilson et al. (2022) SR: focus on opioid-sparing effects⁴
 - 5 within-patient randomized trials (n = 82; moderate GRADE)
 - Interventions: 2.5-20 mg dronabinol orally; 1 trial of smoked cannabis (contained THC; CBD not stated)
 - Inconsistent: increased pain (2 trials), decreased pain (2 trials), decreased affective "unpleasantness" of pain (1 trial)
 - Possible opioid-sparing effect in 1 trial; potential hyperalgesic effect of dronabinal 20 mg in 1 trial
 - Possible increased abuse liability when given with opioids (3 trials)
- Beaulieu et al. (2021) expert opinion letter⁵:
 - 7 studies; study drugs not reported
 - "They are mostly negative and in 4 of them, more intense pain was reported at high doses"

ACUTE PAIN: GENERAL DEFINITION

- Pain resolving within ~4 weeks^{30,31}
- Examples^{32,33}:
 - Dental pain
 - Post-surgical pain
 - Musculoskeletal injuries
- General pharmacotherapy options^{32,33}:
 - Acetaminophen
 - NSAIDs
 - Opioids
 - Gabapentinoids
 - Others per condition

Overview of acute pain randomized, controlled trials						
Study	Population (n)	Intervention	Efficacy			
	Post-operative pain					
Kantor 1981* ²⁵	Unknown surgery (n=61)	Levonantradol (0.25, 0.5 or 1 mg) IM x 1 dose vs PBO; other: N/S	+ (unknown statistical sig)			
Jain 1981* ²⁶	Acute trauma or fracture surgery (n=56)	Levonantradol (1.5, 2, 2.5, or 3 mg) IM x 1 dose vs PBO; other: N/S	+			
Guillard 1983* ¹⁸	Renal surgery (n=100)	Levonantradol (1 or 2 mg) IM x 1 dose vs meperidine IM or PBO IM; other: noramidopurine, camylofine	Meperidine > PBO and CBP			
Buggy 2003 ²²	Hysterectomy (n=20)	THC 5 mg orally x 1 dose vs PBO; other: morphine	+/-			
Beaulieu 2006 ²¹	Variable major surgeries (n = 41)	Nabilone (1 or 2 mg) x 3 doses vs ketoprofen vs PBO; other: morphine	Increased pain with nabilone 2 mg vs PBO			
Seeling* 2006 ²⁴	Radical prostatectomy (n = 105)	Dronabinol 5 mg x 8 doses vs PBO; other: piritramide	+/-			

Key: * lack of information about approval by an Institutional Review Board or similar body; +, efficacy favors CBP over comparator (numerically or statistically); +/-, efficacy favors neither CBP or PBO Abbreviations: CBP, cannabinoid-based product; IM, intramuscular; PBO, placebo; THC, delta-9-tetrahydrocannabinol; vs, versus;

Overview of acute pain randomized, controlled trials					
Study	Population (n)	Intervention	Efficacy		
	Post-operative pain				
Levin 2017 ²⁰	Elective variable surgeries, all women (n=340)	Nabilone 0.5 mg orally x 1 dose pre-op vs placebo; other: N/S	+/-		
Haffar 2021 ²³	Primary knee OA post unilateral TKA (n=89)	Topical CBD stick (120 mg/oz) vs matched topical EO stick vs matched topical CBD stick + EO vs matched topical PBO stick, all topically TID x 14 days; other: APAP, gabapentin, meloxicam; prn opioid for mod-severe pain	+/-		
		Dental pain			
Ostenfeld 2011 ²⁷	Tooth extraction (n=123)	GW842166 (100 mg or 800 mg) x 1 dose pre-op vs ibuprofen 800 mg vs PBO; other: codeine, APAP	+/-		
Kallio- maki ²⁸ 2013	Tooth extraction (n=151)	AZD1940 800 mcg orally x 1 dose pre-op vs naproxen 500 mg vs PBO; other: APAP	+/-		
Other acute pain					
Bebee 2021 ¹⁹	Non-traumatic LBP < 30 days (n=100)	CBD 400 mg orally x 1 dose vs PBO Other treatments: oxycodone q6h, and as needed; ibuprofen and APAP for some	+/-		
Key: +/-, efficacy favors neither CBP or PBO; Abbreviations: APAP, acetaminophen; CBD, cannabidiol; N/S, not specified; OA, osteoarthritis; PBO, placebo; THC, delta-9-tetrahydrocannabinol; vs, versus;					
UNIVERSITY OF UTAH HEALTH					

L. S. SKAGGS PHARMACY INSTITUTE